Publications


* co-first authors
‡ corresponding author

[21] Alexander S, Wang XY, Tseng CY, Douglas TR, Chou LYT‡
High-throughput, label-free detection of DNA origami in single-cell suspensions using origamiFISH-Flow
bioRxiv. 2023/11/02.

[20] Lee RC, Corsano A, Tseng CY, Chou LYT‡
Simple and rewireable biomolecular building blocks for DNA machine-learning algorithms.
bioRxiv. 2023/07/23.

[19] Wang XY, Douglas TR, Zhang H, Bhattacharya A, Rothenbroker M, Tang W, Sun Y, Jia Z, Muffat J, Li Y, Chou LYT‡
Universal, label-free, single-molecule visualization of DNA origami nanodevices across biological samples using origamiFISH.
Nature Nanotechnology

[18] Alexander S, Moghadam MG, Rothenbroker M, Chou LYT‡
Addressing the in vivo delivery of nucleic-acid nanostructure therapeutics .
Advanced Drug Delivery Reviews 2023, 114898.

[17] Wang XY, Douglas TR, Zhang H, Bhattacharya A, Rothenbroker M, Jia Z, Muffat J, Li Y, Chou LYT‡
origamiFISH allows universal, label-free, single molecule visualization of DNA origami nanodevices across biological samples.
bioRxiv 2022/09/20.

[16] Tseng CY, Wang XY, Douglas TR, Chou LYT‡
Engineering DNA Nanostructures to Manipulate Immune Receptor Signaling and Immune Cell Fates.
Advanced Healthcare Materials 2021, 114, 2101844.

[15] Chou LYT‡
Design verification as foundation for advancing DNA nanotechnology applications.
ACS Nano. 2021, 15, 6, 9222-9228.

[14] Lee RC, Douglas TR, Chou LYT‡
DNA-Tethered RNA Polymerase for Programmable In vitro Transcription and Molecular Computation.
JoVE.

—Before University of Toronto:—

[13] Hahn JS*, Chou LYT*, Sorensen RS, Guerra R, Shih WM
Extrusion of RNA from a DNA-origami-based Nanofactory.
ACS Nano. 2020, 14, 2, 1550-1559

[12] Chou LYT, Shih WM.
In-vitro transcriptional regulation using nucleic-acid-based transcription factors.
ACS Synthetic Biology. 2019, 8, 11, 2558-2565.

[11] Ponnuswamy N, Bastings MM, Nathwani B, Ryu JH, Chou LYT, Vinther M, Weiwei AL, Anastassacos F, Mooney DJ, Shih WM.
Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation.
Nature Communications. 2017, 8, 15654.

[10] Zagorosvky K, Chou LYT, Chan WCW.
Controlling DNA-nanoparticle serum interactions.
PNAS. 2016, 113(48), 13600-13605. (Highlighted in ACS Chemical Research in Toxicology)

[9] Chou LYT, Song, F, Chan WCW.
Engineering the structure and properties of DNA-nanoparticle superstructures using polyvalent counterions.
Journal of the American Chemical Society. 2016, 138, 13, 4565-4572. (Highlighted as Editor’s Choice)

[8] Raeesi V, Chou LYT, Chan WCW.
Tuning the drug loading and release of DNA-assembled gold nanorod superstructures.
Advanced Materials 2016, 28, 8511-8518.

[7] Chou LYT, Zagorovsky K, Chan WCW.
**DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination.*
Nature Nanotechnology. 2014, 9, 148-155.

[6] Chen K, Chou LYT, Song F, Chan WCW.
Fabrication of metal nanoshell quantum-dot barcodes for biomolecular detection.
Nano Today. 2013, 8, 228-234.

[5] Chou LYT, Chan WCW.
Nanotoxicology: No signs of illness.
Nature Nanotechnology 2012, 7, 416-417.

[4] Chou LYT, Chan WCW.
Fluorescence-tagged gold nanoparticles for rapidly characterizing the size-dependent biodistribution in tumor models.
Advanced Healthcare Materials 2012, 1, 714-721.

[3] Chou LYT, Ming K, Chan WCW.
Strategies for the intracellular delivery of nanoparticles.
Chemical Society Reviews. 2011, 40, 233-245.

[2] Chou LYT, Chan WCW.
A strategy to coat nanoparticles with polymers for mitigating cytotoxicity and enabling size-tuning.
Nanomedicine. 2011, 6, 767-775.

[1] Chou LYT, Fischer HC, Perrault SD, Chan WCW.
Visualizing quantum dots in biological samples using silver staining.
Analytical Chemistry. 2009, 81, 4560-4565.